Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ping Zhong, Xiao-Hong Zhang,* Hong-Ping Xiao and Mao-Lin Hu

[^0]Correspondence e-mail: kamenzxh@sohu.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.067$
$w R$ factor $=0.199$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^1]
1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-(4-methylphenylsulfonamido)-1H-pyrazole-3-carbonitrile

The title compound, $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$, is a tricyclic amide with an overall ' Y ' shape. The dihedral angle between the pyrazole and attached benzene rings is $97.6(2)^{\circ}$. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with an N (amide) $\cdots \mathrm{O}($ sulfonyl) separation of 2.929 (4) \AA, link the molecules into centrosymmetric dimers.

Comment

The title compound, (I), is an intermediate for the synthesis of 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4trifluoromethylthiopyrazole, 5-amino-3-cyano-1-(2,6-di-chloro-4-trifluoromethylphenyl)-4-trifluoromethylsulphenylpyrazole and 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoro-methylphenyl)-4-trifluoromethylsulfonylpyrazole, which are all good insecticides (Hatton et al., 1993).

(I)

The structure of (I) is shown in Fig. 1. The molecule has an an overall Y shape, formed by the three groups, viz. 2,6-dichloro-4-(trifluoromethyl)phenyl, 4-methylbenzenesulfonyl and a pyrazole ring. The bond lengths and angles are normal (Table 1; Zhang et al., 2005; Zhong et al., 2005). The dihedral angles between the pyrazole and $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 12-\mathrm{C} 17$ benzene rings are 97.6 (2) and 74.2 (1) $)^{\circ}$, respectively.

In the crystal structure, an intermolecular $\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$ hydrogen bond, with an N (amide) $\cdots \mathrm{O}$ (sulfonyl) separation of 2.929 (4) \AA (Table 2) links the molecules into centrosymmetric dimers (Fig. 2).

Experimental

Following the method of Hatton et al. (1993), the reaction of 2,6-dichloro-4-trifluoromethylamine (0.01 mol) with a suspension of nitrosylsulfuric acid (0.01 mol), followed by reaction with a solution

Received 9 December 2005
Accepted 3 January 2006
of ethyl 2,3-dicyanopropionate (0.01 mol) in acetic acid (10 ml), gave 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole (about 0.005 mol), which was then stirred with 4-methylbenzenesulfonyl chloride (0.005 mol) in pyridine $(5 \mathrm{ml})$ at room temperature overnight to give the title compound, (I) (Xu et al., 1999). Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a mixed acetone-ethanol solution (1:1) (m.p. 500501 K). Spectroscopic analysis: IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): $3222,3091,2246$, $1562,1509,1464,1381,1309,1176,1133,1027 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right.$, δ, p.p.m.): $9.70(s, 1 \mathrm{H}), 8.02(s, 2 \mathrm{H}), 7.73(d, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.42(d$, $2 \mathrm{H}, J=8.6 \mathrm{~Hz}$, $), 6.85(s, 1 \mathrm{H}), 2.43(s, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}, \delta\right.$, p.p.m.): 145.8 (1 C), 140.6 (1 C), 137.2 (1 C), 137.0 (1 C), 136.5 (1C), 134.9 ($q, J=33.8 \mathrm{~Hz}, 1 \mathrm{C}$), 130.8 (2C), 128.7 (2C), 128.6 (2C), 127.2 (2C), 123.2 ($q, J=271.4 \mathrm{~Hz}, 1 \mathrm{C}), 113.8$ (1C), 103.6 (1C), 21.5 (1C).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=475.27$
Triclinic, $P \overline{1}$
$a=9.4636$ (10) \AA
$b=10.0256$ (11) \AA
$c=11.6641$ (13) \AA
$\alpha=102.699(2)^{\circ}$
$\beta=102.171$ (2) ${ }^{\circ}$
$\gamma=102.984$ (2) ${ }^{\circ}$
$V=1011.81(19) \AA^{3}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.822, T_{\text {max }}=0.895$
5392 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$
$w R\left(F^{2}\right)=0.199$
$S=1.07$
3585 reflections
272 parameters
H -atom parameters constrained

$Z=2$

$D_{x}=1.560 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2895 reflections
$\theta=2.7-25.0^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.43 \times 0.40 \times 0.24 \mathrm{~mm}$

3585 independent reflections
3041 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 11$
$l=-13 \rightarrow 10$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1091 P)^{2}\right. \\
\quad+0.809 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.78 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

S1-O2	$1.421(3)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.430(4)$
S1-N4	$1.640(3)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.387(4)$
F1-C1	$1.256(7)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.485(5)$
N1-C10	$1.348(4)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.381(5)$
N1-N2	$1.359(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.383(6)$
O2-S1-O1	$120.19(18)$	$\mathrm{C} 10-\mathrm{N} 4-\mathrm{H} 4$	119.1
O2-S1-N4	$108.35(18)$	$\mathrm{F} 2-\mathrm{C} 1-\mathrm{F} 3$	$105.7(6)$
O2-S1-C12	$108.68(19)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.5(3)$
N4-S1-C12	$105.57(17)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$113.8(3)$
C10-N1-N2	$112.5(3)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 18$	$120.2(5)$
C10-N1-C5	$127.6(3)$		
Cl1-C4-C5-C6	$178.3(3)$	$\mathrm{N} 4-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 17$	$116.4(3)$
N1-C5-C6-Cl2	$-1.4(4)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 13$	$-178.8(3)$
N2-N1-C10-C9	$-1.7(4)$	$\mathrm{N} 4-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 13$	$-62.8(3)$
C5-N1-C10-N4	$3.2(6)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$0.8(7)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 12-\mathrm{C} 17$	$-132.8(3)$		

organic papers

This work was supported by the National Natural Science Foundation of China (grant No. 20572079) and the Natural Science Foundation of Zhejiang Province (grant No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Xu, K., Li, L. \& Yu, L. (1999). Hecheng Huaxue (China), 7, 105-108. (In Chinese.)
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, X., Zhong, P., Xiao, H. \& Hu, M. (2005). Acta Cryst. E61, o2134o2135.
Zhong, P., Zhang, X., Xiao, H. \& Hu, M. (2005). Acta Cryst. E61, o3110o3111.

[^0]: Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

[^1]: © 2006 International Union of Crystallography All rights reserved

